shorter Cu-Cl distances of 2.254 (1) **A** and two angles at 97.6 (1) ^o, two at 100.0 (1) ^o, and two at 133.9 (1) ^o. This distortion is typical of $CuCl₄²⁻$ ions in the presence of non-hydrogen-bonding cations, as is the observed bond distance.15 Thus it is clear structurally that the $Cu(I)$ and $Cu(II)$ ions are localized at sites $Cu(1)$ and $Cu(2)$, respectively. Since the geometries of the two sites are so similar, this material would be best described as a type IIb mixed-valence system in the Robin and Day classification.16

The intense blue color of this salt, in contrast to the normal yellow to **red** color of copper(I1) chloride salts, deserves comment. Although sufficient sample is not available to obtain a spectrum, the blue would imply a strong absorption in the low-energy end of the visible region. The band is strongly polarized along the crystal *c* axis, that is, along the chain direction. The logical origin of this band would likely be an intervalence charge-transfer transition. Further work will be carried out as soon as a repeatable synthetic scheme is worked out.

Acknowledgment. This research was supported in part by NSF Grant DMR-8219430. The X-ray diffraction facility was established through funds provided by NSF Grant CHE-8408407 and The Boeing Co.

Supplementary Material Available: Tables of data collection parameters, positional and isotropic thermal parameters of non-hydrogen atoms, bond lengths and angles, anisotropic thermal parameters for non-hydrogen atoms, and hydrogen atom positional and thermal parameters and a stereographic view of the unit cell contents (8 pages); a listing of observed and calculated structure factors (6 pages). Ordering information is given on any current masthead page.

- (15) Smith, D. W. *Coord. Chem. Rev.* 1976, 21, 93.
- Robin, M. B.; Day, P. *Adu. Inorg. Chem. Radiochem.* 1967, 10, 248.

Roger D. Willett

Chemistry Department Washington State University Pullman, Washington 99164

Received July 22, 1987

Synthesis, Structure, and Reactivity of [Fe(dbt) (C0)2(Cp)l[BF4] and Related S-Bonded Thiophene Complexes

Sir:

Hydrodesulfurization and hydroliquefaction are two essential steps in the effective utilization of abundant, high-sulfur coal.^{1,2} These reactions are catalyzed by a variety of metal compounds, usually heterogeneously. Organometallic compounds, including $[Fe(CO)_5]$, $[Fe_2(CO)_4(Cp)_2]$ (Cp = η -C₅H₅), and $[Mo(CO)_6]$, are effective coal hydroliquefaction catalysts, alone or in the presence of added sulfur.^{2,3} These carbonyls have also demonstrated hydrodesulfurization activity with coal⁴ and coal model

compounds.^{4,5} The thiophenes, especially dibenzothiophene (dbt), are the best model compounds for organically bound sulfur in coal,⁶ yet the transition-metal coordination chemistry of thiophene ligands is not well investigated.

Chromium,⁷ manganese,⁸ iron,⁹ ruthenium,¹⁰ rhodium, and iridium¹¹ form η^5 -complexes with certain thiophenes, especially tetramethylthiophene, and η^6 -complexes with the arene rings of benzothiophenes have been reported.¹² Thiophenes are weak S-donor ligands. **A** few S-bonded complexes of thiophene and 2,5-dimethylthiophene are known for iron¹³ and ruthenium,¹⁴ but these are not fully characterized because they are so labile. **In**corporating thiophenes into chelating ligands leads to some increase in stability. $[R\uCl_2[P(4-MeC_6H_4)_2(SC_{12}H_7)]_2]$ with a chelating **phosphine-dibenzothiophene** ligand has been prepared and structurally characterized.¹⁵ Copper and silver form structurally characterized complexes with chelating imide-thiophene ligands in which the thiophenes interact only weakly with the metals.¹⁶ Thus, there are few good models for the attachment of thiophenes to metallic catalysts via sulfur, a bonding mode believed to be the first step in catalytic desulfurization of coal.¹⁷ We report here the preparation and structure of an iron-dibenzothiophene complex in which the thiophene is not part of a chelating ligand system.

Displacement of isobutene from $[Fe(\eta^2-H_2C=CMe_2)(CO)_2$ - (Cp) [BF₄]¹⁸ by dibenzothiophene (dbt), thiophene (th), benzo-

- (4) (a) Alper, H.; Blair, C. Fuel **1980,** 59,670. (b) Doyle, G. *Prepr.-Am. Chem. SOC., Diu. Pet. Chem.* 1976, 21, 165-172.
- *(5)* (a) Luh, T.-Y.; Wong, C. S. J. *Org. Chem.* 1985,50,5413-5415. (b) Alper, H.; Paik, H. N. *J. Org. Chem.* 1977, 42, 3522-3524.
- (6) Galpern, G. D. **In** *Chemistry* of *Heterocyclic Compounds:* Gronowitz, S., Ed.; Wiley: New York, 1985; Vol. 44, Chapter 4, pp 325-351.
- (7) (a) Fischer, E. 0.; Ofele, K. *Chem.* Ber. 1958, 91, 2395-99. (b) Bailey, M. F.; Dahl, L. F. *Inorg. Chem.* 1965, *4,* 1306-1314. (c) Segard, C.; Roques, B.; Pommier, C. **C.** *R. Seances Acad. Sci., Ser.* C 1971, 272, 2179-2180. (d) Mangini, A,; Taddei, F. *Inorg. Chim. Acta* 1968, 2, 12-14. (e) Guilard, R.; Tirouflet, J.; Fournari, P. *J. Organomet. Chem.* 1971, 33, 195-213.
- (8) (a) Lesch, D. A.; Richardson, **J.** W.; Jacobson, R. A,; Angelici, R. **J.** *J. Am. Chem. SOC.* 1984,106,2901-2906. (b) Singer, H. *J.* Organomet. *Chem.* 1967, *9,* 135-140.
- (9) (a) Bachmann, P.; Singer, H. Z. *Naturforsch.*, B: Anorg. Chem., Org. Chem. 1976, 31B, 525. (b) Catheline, D.; Astruc, D. J. Organomet. *Chem.* 1983, 248, C9-Cl2. (c) Braitsch, D. M.; Kumarappan, R. *J. Organomet. Chem.* 1975,84, C37-C39. (d) Lee, C. C.; Iqbal, M.; Gill, U. S.; Sutherland, R. G. J. *Organomet. Chem.* 1985, 288, 89-96.
- (10) (a) Spies, G. H.; Angelici, R. J. J. *Am. Chem. SOC.* 1985, 107, 5569-5570. (b) Sauer, N. N.; Angelici, R. J. *Organometallics* 1987, 6, 1146-1150. (c) Spies, G. H.; Angelici, R. **J.,** personal communica-tion, 1986. (d) Draganjac, M.; Ruffing, C. **J.;** Rauchfuss, T. B. Or*ganometallics* 1985, *4,* 1909-1911.
- (11) (a) Russell, M. **J.** H.; White, C.; Yates, A.; Maitlis, P. M. *J. Chem. SOC., Dalton Trans.* 1978, 857-861. (b) Sanchez-Delgado, R. A,; Marquez-Silva, R. L.; Puga, J.; Tiripicchio, A,; Camellini, M. T. J. *Organomet. Chem.* 1986, 316, C35-C38.
- (12) (a) King, R. B.; Stone, F. G. A. J. Am. Chem. Soc. 1960, 82, 4557-4562. (b) Fischer, E. O.; Goodwin, H. A.; Kreiter, C. G.; Simmons, H. D., Jr.; Sonogashira, K.; Wild, S. B. J. Organomet. Chem. 1968, *14,* 359-374. (c) Lumbroso, H.; Segard, C.; Roques, B. J. *Or-ganomet. Chem.* 1973, 61, 249-260. (c) Lee, C. C.; Steele, B. R.; Sutherland, R. G. *J. Organomet. Chem.* 1980, 186, 265-270.
- (13) (a) Kuhn, N.; Schumann, H. J. *Organomet. Chem.* 1984,276.55-66, (b) Guerchais, V.; Astruc, D. *J. Organomet. Chem.* 1986,316, 335-341.
- (14) Kuehn, C. G.; Taube, H. *J. Am. Chem. SOC.* 1976, *98,* 689-702.
- (15) Bucknor, S. M.; Draganjac, M.; Rauchfuss, T. B.; Ruffing, C. **J.;** Fultz, W. C.; Rheingold, A. L. J. *Am. Chem. SOC.* 1984, 106, 5379-5381.
- (16) (a) Van Stein, G. C.; van Koten, G.; Spek, A. L.; Duisenberg, A. J. M.; Klop, E. A. *Inorg. Chim. Acta* 1983, 78, 261–263. (b) Van Stein, G. C.; van Koten, G. Vrieze, K.; Spek, A. L.; Klop, E. A.; Brevard, C. *Inorg.*
- (17) Harris, *S.;* Chianelli, R. R. *J. Catal.* 1984, 86, 400-412 and references cited.
- (18) Rosenblum, M.; Giering, W. P.; Samuels, S.-B. *Inorg. Synth.* 1986,24, 163-167. Note that there is an error in this procedure. 3-Chloro-2 methylpropene (methallyl chloride), not **1-chloro-2-methylpropene** (isobutenyl chloride), should be used.

 (14) Kaiser, **J.;** Brauer, G.; Schroder, A.; Taylor, I. F.; Rasmussen, **S.** E. J. *Chem. SOC., Dalton Trans.* 1974, 1490.

⁽a) Schuman, S. C.; Shalit, H. *Caral. Reu.* 1970, *4,* 245-318. (b) (1) Mitchell, P. C. H. *Catalysis (London)* 1981, *4,* 175-209. Porter, C. R.; Kaesz, H. D.; Leto, **J.** L.; Giordiano, T. **J.;** Haas, W. R.;

Johnson, E.; Berry, W. H., Jr. Coal Process. Technol. 1981, 7, 135.
(a) Yamada, O.; Suzuki, T.; Then, J. H.; Ando, T.; Watanabe, Y. Fuel
Process. Technol. 1985, 11, 297–311. (b) Suzuki, T.; Yamada, O.;
Takahashi, Y.; Watan Fuel 1984,63, 1706-1709. (d) Watanabe, Y.; Yamada, *0.;* Fujita, K.; Takegami, Y.; Suzuki, T. *Fuel* 198463, 752-755. (e) Lynch, T. **J.;** Banah, M.; McDougall, M.; Kaesz, H. D. J. Mol. Catal. 1982, 17 109-113. (0 Lynch, T. **J.;** Banah, M.; Kaesz, H. D.; Porter, C. R. *J. Org. Chem.* 1984, *49,* 1266-1270.

Figure 1. ORTEP²⁹ plot of the structure 1 showing 50% probability elipsoids. Selected bond distances **(A): Fe-S, 2.289 (1); Fe-C1, 1.780 (6);** Fe-C2, 1.779 (7); Fe-Cp0, 1.723 (5); S-C3, 1.723 (5); SiC14, 1.773 (5); C3-C8, 1.390 (7); C8-C9, 1.451 (7); C9-C14, 1.392 (7). Selected bond angles (deg): **S-Fe-Cl, 96.9 (2); S-Fe-C2, 91.7 (2); S-FeCpO, 121.2 (2); Cl-Fe-C2, 94.8 (3); Fe-S-C3, 111.1 (2); Fe-S-C14, 108.2 (2);** Fe-S-Tp, **119.4 (2); C3-S-Cl4, 90.5 (2); S-C3-C8, 112.0 (4); C3-** C8-C9, 112.6 (4); C10-C9-C14, 118.3 (5); S-C14-C9, 112.1 (4). Cp0 is the centroid of the cyclopentadienyl ligand; Tp is the midpoint of the **C8-C9** bond.

[b]thiophene (bt), and phenyl methyl sulfide in refluxing dichloromethane produced complexes **1-4,** respectively, in good to

tetrahydrofuran from $[Fe(thf)(CO)₂(Cp)][BF₄]$ by thiophene gave intractable mixtures, contrary to the reported preparation of $[Fe(th)(CO)₂(Cp)][BF₄]$ by this method.^{13a} Similarly, the use of "[Fe(BF₄)(CO)₂(Cp)]"²⁰ in dichloromethane did not give satifactory yields of thiophene complexes. Complex **4** had been previously prepared in 74% yield by oxidizing $[Fe_2(CO)_4(Cp)_2]$ with $AgPF_6$ in acetone in the presence of PhSMe.²¹ Reactions of $[Fe(\eta^2-H_2C=CMe_2)(CO)_2(Cp)]^+$ salts with dibenzofuran and tetraphenylthiophene produced **no** tractable products.

(21) Williams, W. E.; Lalor, F. J. *J. Chem. Soc., Dalton Trans.* **1973, 1329.**

Spectroscopic evidence²² suggested that the thiophene ligands in **1-4** are bonded to iron via sulfur only, and this was confirmed by single-crystal X-ray diffraction of **l.23** A plot of the cation is shown in Figure 1, along with significant bond distances and angles. The Fe-S bond length is 2.289 (1) **A,** slightly shorter than the sum of the covalent radii $(2.38 \text{ Å})^{24}$ Fe-S distances in other Fp-S (Fp = $[Fe(CO)₂(Cp)]$) compounds²⁵ range from 2.109 (2) $F \in SC(Fp)SCS(Fp)$ [SO₃CF₃];^{25b} in general, the higher the oxidation state of sulfur, the shorter the Fp-S bond. The Fe-S distance in 1 is close to those in $[Fe(SC₂H₅)(CO)₂(Cp)]$ (2.296) (2) Å) and $[(Fp)_{2}(\mu$ -SC₂H₅)] $[BF_{4}]$ (2.297 (2), 2.304 (2) Å).^{25c} The dimensions of the $[Fe(CO)₂(Cp)]$ group in 1 are similar to those in related compound^.^^^^^ The dbt ligand in **1** is oriented anti to the cyclopentadienyl group, presumably minimizing intramolecular steric contacts, with a Cp(centroid)-Fe-S-Tp torsional angle of -156.8° (Tp is the midpoint of the C8-C9 bond). The dbt ligand is tipped away from iron with pyramidal geometry at sulfur and an Fe-S-Tp angle of 119.4', more acute than the 132.0° and 130.1° Ru-S-Tp angles observed in $[RuCl₂(P(4 MeC_6H_4)_2(SC_{12}H_7)_{2}$.¹⁵ The dimensions of the dbt ligand are similar to those in free dbt.²⁶ The mean C-S bond length in 1 (1.748 Å) is about the same as that of free dbt (1.740 Å) , and the C-S-C angle has decreased slightly from 91.5' in dbt to 90.5 (2)^o in 1. The dbt ligand is nearly planar, with a slight "bowing" of the benzo rings relative to the thiophene ring, with dihedral angles of **1.55'** (ring C3-C8) and 0.96' (ring C9-C14). This bowing is slightly greater than that in free dbt $(1.2^{\circ}$ and $0.4^{\circ})$ but less than that in $[RuCl_2[P(4-MeC_6H_4)_2(SC_{12}H_7)]_2]$ (9° and 3.5'). Perhaps the distortions in the ruthenium compound are attributable to strain in the chelate ring. **Inorganic Chemistry, Vol. 26, No. 21, 1987 3425**

Spectroscopic evidence²² suggested that the thiophene ligands

in 1–4 are bonded to iron via sulfur only, and this was confirmed

by single-crystal X-ray diffraction of

- (22) Spectroscopic and physical data are as follows. For 1: ¹H NMR (CD₃NO₂, 90 MHz) δ 8.4–7.6 (3 m, 8 H, dbt), 5.55 (s, 5 H, Cp): IR $(\nu(\text{CO})$, Nujol) 2061, 2024 cm⁻¹;¹³C NMR (CD₃NO₂, 50.29 MHz) δ 6.29 2064, 2016 cm⁻¹; ¹³C NMR (CD₂Cl₂, 50.29 MHz) δ_C 207.0 (CO), 138.4 and 134.4 (th), and 87.1 (Cp); mp 70 °C dec. For 3, ¹H NMR (CD₃NO₂, 90 MHz) δ 8.2–7.3 (3 m, 6 H, bt), 5.54 (s, 5 H, Cp); IR (u(CO), Nujol) **2061, 201** 1 cm-I; I3C NMR (CD,CI,, **50.29** MHz, **300** K) 6c **207.4** (CO), **143.1, 140.7, 132.9, 132.7, 129.8, 128.3, 127.2,** and 125.2 (bt), and 87.5 (Cp); ¹³C NMR (CD₂Cl₂, 50.29 MHz, 170 K) δ_C
207.8, 207.0 (CO); mp 99-102 °C; Anal. Calcd for C₁₃H₁₁BF₄FeO₂S:
C, 45.27; H. 2.78; S, 8.06. Found: C, 45.57; H, 2.76; S, 7.73. For 4: ¹H NMR ((CD₃)₂CO, 90 MHz) δ 7.8-7.5 (m, 5 H, Ph), 5.70 (s, 5H, Cp), **3.01 (s, 3** H, CH,); NMR ((CD3),C0, **50.29** MHz, **300** K) *6~* **208.9** (CO), **134.6, 131.5, 131.3,** and **129.4** (Ph), 88.8 (Cp), and **27.2** (CH,); I3C NMR ((CD&CO, **50.29** MHz, **185** K) *aC* **209.4, 208.4** (CO).
- (23) \overline{X} -ray diffraction data for 1: irregular red-orange prism, 0.2 mm \times 0.3 mm × 0.4 mm, triclinic, space group PI (No. 2), $Z = 2$, $a = 10.359$
(2) Å, $b = 10.931$ (3) Å, $c = 9.320$ (2) Å, $\alpha = 112.75$ (2)°, $\beta = 93.36$
(2)°, $\gamma = 102.85$ (2)°, $V = 936.45$ Å³, $\rho_{\text{cal}} = 1.59$ g cm⁻³. Data wer collected at **23** "C **on** an Enraf-Nonius CAD4 diffractometer using graphite-monochromatized Mo K α radiation. A total of 4304 reflections were measured $(+h, \pm k, \pm l; 0 < \theta < 27.5^{\circ}; \omega - 2\theta$ scans) and of these 2354 with $(F_o)^2 \ge 3\sigma(F_o)^2$ were used. Agreement between equivalent reflections was satisfactory. The iron atom was located by using Patterson methods, and remaining non-hydrogen atoms were located by using DIRDIF²⁹ or difference Fourier methods. Hydrogen atoms were placed in calculated positions with $d(C-H) = 0.95$ Å. All non-hydrogen atoms were refined with anisotropic thermal parameters, and hydrogens with $B = B$ (attached C) + 1.0 Å² were included as a fixed contribution. Corrections for extinction and absorption $(\mu = 9.59)$ cm⁻¹) were not necessary. Full-matrix least-squares refinement led to $R = 4.8\%$ and $R_w = 5.7\%$.
- **(24)** . , (a) ., Churchill. M. R.: Wormald, J. *Inora. Chem.* **1971.10, 572-78.** (b) Churchill, **M.** R.; DeBoer, B. G.; Kalra, K. L. *Znorg. Chem.* **1973,12, 1646-1650.** (c) Churchill, M. R.; Kalra, K. L. *Inorg. Chem.* **1973,12, 1650-1656.**
- (25) (a) Hartmann, G.; Froböse, R.; Mews, R.; Sheldrick, G. M. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1982, 37B, 1234-1240. (b) Albano, V. G.; Braga, D.; Busetto, L.; Monari, M.; Zanotti, V. J. Chem. Soc., Chem. Com **1379-1 385.**
- **(26)** (a) Schaffrin, R. M.; Trotter, J. *J. Chem. SOC. A* **1970, 1561-1565.** (b) Bechtel, F.; Chasseau, D.; Gaultier, J.; Hauw, C. *Cryst. Struct. Com mun.* **1977,** *6,* **699-702.**

⁽¹⁹⁾ Experimental Procedure for 1: A solution of $[Fe(\eta^2-H_2C=CMe_2)-(CO)_2(Cp)][BF_4]^{18}$ (0.270 g, 0.844 mmol) and dibenzothiophene (0.188 g, 1.02 mmol) in 20 mL of dichloromethane was refluxed under nitrogen for 4 h. An orange three **5-mL** portions of ethyl ether and dried in vacuo. The resulting orange, microcrystalline solid (0.355 g, 94% yield) was pure [Fe-
(dbt)(CO)₂(Cp)][BF₄] (1) by ¹H NMR. Crystals for X-ray diffraction were grown by diffusion of ethyl ether saturated N_2 into a CH₂Cl₂
solution of 1. [Fe(th)(CO)₂(Cp)][PF₆] (2, 48%), [Fe(bt)(CO)₂-
(Cp)][BF₄] (3, 91%), and [Fe(PhSMe)(CO)₂(Cp)][PF₆] (4, 82%) were
prepared

⁽²⁰⁾ Reger, D. **L.;** Coleman, C. J.; McElligott, P. J. *J. Organomet. Chem.* **1979, 171, 73-84.**

The thiophene ligands of complexes **1-3** are labile. The dbt ligand of **1** is displaced by ca. 2 equiv of CH_3CN in CD_3NO_2 solution at **room** temperature in about **1** week to give [Fe- $(CH_3CN)(CO)_2(Cp)][BF_4]$ and free dbt. In contrast, the thiophene ligand of 2 is quantitatively displaced by CD_3NO_2 in ca. 3 h at room temperature.²⁷ The benzothiophene ligand of **3** is also displaced by CH3CN or CD3N02. Decomposition of **3** to $[Fe(CO)₃(Cp)][BF₄]$ occurs during attempted slow recrystallization from dichloromethane/ethyl ether.

The 13C NMR spectrum of benzothiophene complex **3** shows a singlet at room temperature for the two diasterotopic carbonyl ligands but two separate signals at 170 K ($\Delta G^* = 39$ kJ/mol at 190 K, the coalescence temperature in CD_2Cl_2) due to slowing of the stereochemical inversion at sulfur.^{22,28} Free benzothiophene signals remained sharp and distinct from those of complex **3** at room temperature, ruling out an intermolecular mechanism for coalescence in **3.** To our knowledge, this is the first reported sulfur inversion barrier for a thiophene complex. For comparison, the I3C NMR signals of the carbonyl ligands of [Fe(PhSMe)- $(CO)₂(Cp)$] [PF₆] coalesce at 249 K with $\Delta G^* = 52 \text{ kJ/mol}.^{22}$ In general, inversion barriers for π -conjugated sulfide ligands are about 10 kJ/mol lower than for saturated sulfide ligands, whereas cyclic sulfide ligands have inversion barriers slightly higher than acyclic ones.28b

Recent work by Angelici^{8a, 10a-c} suggests that π -bonded thiophene species are responsible for C-S bond cleavage and hydrogen/ deuterium exchange on hydrodesulfurization catalysts. The isolation and characterization of **1** provides a structural model for the interaction of organic sulfur in coal with a metallic catalyst via sulfur only, which is a viable initial step in hydrodesulfurization.¹⁷

Acknowledgment. We thank the Consortium for Fossil Fuel Liquefaction Science, funded by the Pittsburgh Energy Technology Center, United States Department of Energy, for financial support, and Robert Angelici for helpful discussions and a preprint of ref 1oc.

Supplementary Material Available: For the structure of **1,** tables of crystal data and details of the intensity collection and refinement, positional and thermal parameters, bond distances, bond angles, and leastsquares planes (9 pages); a table of observed and calculated structure factors (15 pages). Ordering information is given on any current masthead page.

- (b) Abel, E. W.; Bhargava, S. K.; Orrell, K. G. *Prog. Inorg. Chem.* **1984, 32,** 1-1 18.
- (29) ORTEP: Johnson, C. K. "ORTEP", Report ORNL 5138; Oak Ridge National Laboratory: Oak Ridge, TN, 1976. DIRDIF: Beurskens, P.
T.; Prick, P. A. J.; Van den Hark, T. E. M.; Gould, R. O. *Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.* 1980, **36A,** 653-656.

Received May 19, 1987

Halide-Promoted Formation and Carbonylation of μ_3 -Nitrene Ligands on Ru₃ Clusters

Sir:

Bridging carbene ligands in polynuclear compounds often **un**dergo facile carbonylation to form ketene ligands, μ -CR₂ + CO $\rightarrow \mu$ -CR₂=C=O.¹ However, the related carbonylation of

Figure 1. ORTEP drawing of the cluster anion in [Na(18-crown-6]- $[Ru_3(\mu_3-NPh)(CO)_9(I)]$ **(3c):** $Ru(1)-Ru(2), 2.770$ **(1)** Å; $Ru(1)-Ru(3),$ 2.740 (1) Å; Ru(2)-Ru(3), 2.711 (1) Å; Ru(1)-I, 2.762 (1) Å; Ru(1)-N, 2.056 (5) A; Ru(2)-N, 2.077 (5) A; Ru(3)-N, 2.052 (6) A; Ru(l)-C(9), 2.053 (7) Å; Ru(2)–C(9), 2.168 (6) Å; Ru(3)–C(9), 2.329 (7) Å; Na...I, 3.680 *(5)* **A;** Na...0(6), 2.871 (7) A; Ru(l)-Ru(2)-Ru(3), 60.0 (0)'; $Ru(2)-Ru(3)-Ru(1), 61.1 (0)^o; Ru(3)-Ru(1)-Ru(2), 58.9 (0)^o; Ru-$ (1)-C(9)-O(9), 139.1 (5)°; Ru(2)-C(9)-O(9), 132.8 (5)°; Ru(3)-C- $(9)-O(9)$, 126.8 (6) °.

bridging nitrene ligands to form isocyanates, μ -NR + CO \rightarrow μ -RN=C=O, has proven difficult to achieve,²⁻⁵ even though such a reaction has been invoked as an important step in catalytic nitroaromatic carbonylation.6 We earlier demonstrated that halides accelerate the methylene to ketene conversion,^{1b} and herein we show that they also dramatically promote nitrene carbonylation to form isocyanates. Furthermore, halides have also been found to accelerate the *formation* of nitrene ligands from nitrosobenzene.

The resistance of nitrene clusters to carbonylation is particularly well illustrated by the high yield recovery of $M_3(\mu_3-NPh)_2(CO)_9$ $(M = Fe, Ru)$ following attempted carbonylation at 120 atm, 150

- Smieja, J. A.; Gozum, J. E.; Gladfelter, W. L. *Organometallics* **1984**, **6**, **1911** (3) *6.* _. **1311.**
- The M₃(μ_3 -NPh)₂(CO)₉ clusters were recovered in 69% (M = Ru) and 89% (M = Fe) yields, respectively.
Basu, A.; Bhaduri, S.; Khwaja, H. *J. Organomet. Chem.* **1987**, 319,
- **C28.** (a) Bhaduri, **S.;** Gopalkrishnan, K. S.; Clegg, W.; Jones, P. G.; Shel-
- drick, G. M.; Stalke, D. J. *Chem. Soc., Dalton Trans.* **1984,** 1765. (b) Cenini, S.; Pizzotti, M.; Crotti, C.; Porta, F.; Monica, G. L. *J. Chem.* Soc., Chem. Commun. 1984, 1286. (c) Alper, H.; Hashem, K. E. J. Am. Chem. Soc. 1981, 103, 6514. (d) Des Abbayes, H.; Alper, H. J. Am. Chem. Soc. 1977, 99, 98. (e) L'Eplattenier, F.; Matthys, P.; Calderazzo, F. Inorg. Chem.

⁽²⁷⁾ In our hands, the ¹H NMR spectrum of **2** in $(CD_3)_2CO^{13a}$ shows free thiophene and $[Fe((CD_3)_2CO)(CO)_2(Cp)]^+$.

(28) (a) Kuhn, N.; Schumann, H. *Inorg. Chim. Acta* **1986**, *116*, *L11*–*L12*.

⁽a) Bassner, S. L.; Geoffroy, G. L. *Ah.* Organomet. Chem., in press. (b) Morrison, E. D.; Geoffroy, G. L.; Rheingold, A. L. *J. Am. Chem. SOC.* **1985, 107,** 3541. (e) Morrison, E. **D.;** Steinmetz, G. R.; Geoffroy, G. L.; Fultz, W. C.; Rheingold, A. L. J. *Am. Chem. SOC.* **1984, 106,** 4783. (d) Lin, **Y.** C.; Calabrese, J. C.; Wreford, S. S. *J. Am. Chem. SOC.* **1983,** *105,* 1679. (e) Roper, M.; Strutz, H.; Keim, W. J. *Organomel. Chem.* **1981, 219,** C5. *(f)* Holmgren, **J.** S.; Shapley, J. R.; Wilson, S. R.; Pennington, W. T. *J. Am. Chem. SOC.* **1986,** *108,* 508.

 (2) **(a)** Williams, G. D.; Whittle, R. R.; Geoffroy, G. L.; Rheingold, A. L. J. *Am. Chem. SOC.* **1987,109,** 3936. (b) Han, **S.** H.; Geoffroy, G. L.; Rheingold, A. L. *OrganomeiaIlics,* in press. (e) Han, S. H., unpublished observations.